Poster #1272 ICAAC 2014 Washington, DC September 5-9

Detection and Differentiation of Shiga Toxins 1 and 2 in Fecal Samples with a Rapid Immunoassay

INTRODUCTION

Shiga toxin Escherichia coli (STEC) infection is a leading cause of foodborne illness related hospitalization in the United States. STEC infection is usually linked to the consumption of contaminated meat, produce, or dairy products, although person-toperson transmission is also possible. Early diagnosis of infected individuals is crucial, as the improper administration of antibiotics can exacerbate the disease. Current CDC guidelines recommend that fecal samples be tested only after overnight culture in an enrichment broth, as the level of toxin present in the feces may not be detectable, citing a publication by Cornick et al. to support this recommendation. However, in the Cornick study, due to HIPAA regulations, the researchers had to test fecal samples obtained several days (on average 5) after the original STEC diagnosis had been made. Because STEC levels in the feces decrease as the disease progresses, fecal samples should be obtained and tested as soon as possible after symptoms appear. Since Cornick et al. were unable to test the early fecal sample originally submitted for diagnosis, their results may not accurately reflect the efficacy of direct fecal testing for Shiga toxin. Here we present our results of direct testing of fecal samples for Shiga toxin without the need for a culture step using the SHIGA TOXIN QUIK CHEK.

METHODS

Fecal specimens (n=584) collected prospectively over an 8 month period were used for this study. Upon receipt, the Vero cell cytotoxicity neutralization assay was started and the specimens were tested with the SHIGA TOXIN QUIK CHEK per the package insert procedure for direct testing of fecal samples. Once a positive sample was identified by either method, GN broth, MacConkey broth, and SMAC plate cultures were started. Following an overnight (16-20 hour) 37°C incubation, broth cultures were tested for toxin by Vero cell assay, and broth and SMAC plate cultures tested with the SHIGA TOXIN QUIK CHEK following the package insert procedure for culture testing. O157 positive samples were identified using a combination of an O157 immunoassay and identification of clear colonies on SMAC plate cultures. Shiga toxin subtype was determined by PCR using a modification of the method described by Scheutz et al.

RESULTS AND DISCUSSION

The Vero cell cytotoxicity neutralization assay is considered the reference standard for detection of Shiga toxin in fecal samples because of its extreme (picogram level) analytical sensitivity. Although extremely sensitive, it is laborious and results are not available for 48-72 hours. In this study, the SHIGA TOXIN QUIK CHEK detected all fecal samples identified as positive by Vero cell testing. Of the 10 identified positive specimens, only 9 were detected by GN broth culture testing, 8 by MacConkey broth culture testing, and 8 by testing growth from a SMAC plate. As culturing was not performed on all samples, however, we do not know if fecal culture testing would have identified additional positive specimens missed by direct fecal testing. Samples that test positive by the direct fecal method but test negative when cultured could be explained by lack of viable STEC cells in the fecal specimen, low number of STEC cells that are outcompeted by other fecal organisms when cultured, or inhibitors present in the fecal sample such as antibiotics. Direct testing of fecal specimens with the SHIGA TOXIN QUIK CHEK allows for rapid, sensitive, and specific detection of Shiga toxin in fecal specimens with performance comparable to the Vero cell cytotoxicity assay, without the need for an overnight culture step.

further characterization of identified positive specimens Guik CHER Vero Assay Subsymption State State Vero Assay Guik CHER Vero Assay Subsymption State State Vero Assay Subsymption Vero Assay Guik CHER			-							re test								
S1+++++++StataS2++++++++StataS3 ⁶ +++++++++NegativePositive Stx1/22S5+++++++++NegativePositive Stx1/2S6+++++++++NegativePositive Stx1/2S6++++++++Stata2aS7+++++++Stata2aS9+++++++Stata2aS10+++++++Stata2aS10+++++++Stata2aS10+++++++Stata2aS10+++++++Stata2aS10++++++Stata2aS10++++++Stata2aS10++++++Stata2aS10++++++Stata2aS10++++++Stata2aS10++++++Stata2aS10- <th></th> <th colspan="3">Direct Fecal</th> <th></th> <th></th> <th colspan="2">culture^a</th> <th colspan="2">SMAC Plate Culture</th> <th></th> <th></th> <th>C</th> <th></th> <th>C</th>		Direct Fecal					culture ^a		SMAC Plate Culture				C		C			
S2 + - + + + + + + + + + + + + + + + + +	Sample	Stx1	Stx2	Stx1	Stx2	Stx1	Stx2	Stx1	Stx2	Stx1	Stx2	0157	Subtype		1 2		1 2	
S3 ^o - + + + + + + + + + + + + + + + + + +	S1	+	-	+	-	-	-	tnp ^b	tnp ^b	-	-	-	Stx1a					
S4 + + + + + + Stata Negative Positive Stx1/2 S5 + + + + + Stata		+	-	+	-	+	-	+	-	+	-	-	Stx1a		SHIGA TOXIN		SHIGA TOXIN	
 State to the second s		-	+	-	+	+	+	+	+	+	+	+/-		100	Nogativo	Po	sitive $Sty1/2$	
 S6 + · · + · + · + · · + · · · Stx1a S7 + · + · + · + · + · + · + · · · Stx1a S8 · + · + · + · + · + · + · · · · Stx1a S8 · + · + · + · + · + · + · · · · · Stx1a S8 · + · + · + · + · + · + · · · · · · ·		+	+	+	+	+	+	+	+	-	-	+			negative			
\$7 +		+	-	+	-	+	-	+	-	+	-	-			0		0	
S8 + + + + + + Sbta S10 + + + + + Sbta B10th culture results show are for CN, which agreed with the MacConckey train if the MacConckey broth if the paceriment was solve and Stx2a, however, the isolate dutained from this specimen was solve and Stx2a strain and a non-O157/Stx1a/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx2a/Stx2a/Stx2a/Stx2a/Stx2a		+	-	+	-	+	-	+	-	+	-	-						
S9 + + + + + Stria S10 + + + + + + Stria/2a ⁴ Broth culture results shown are for GN, which agreed with the MacConkey results for all specimens except S4, which did not grow in MacConkey torb Hybrid to the MacConkey torb Hybrid to the MacConkey torb Hybrid torber the Stria and Strik and Str		+	-	+	-	+	-	+	-	+	-	-			1 1 2		1 2	
S10 + + + + + + SHIGA TOXIN SHIGA TOXIN **Broth culture results shown are for GN, which agreed with the MacConkey results for all specimens except S4, which did not grow in MacConkey broth *trp = test not performed; *Two STEC isolates were recovered: an O157/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx2a strain and a non-O157 strain %Fecal sample was positive for both Stx1a and Stx2a, however, the isolate obtained from this specimen was stx2a positive only Shiga Toxin 1 (2) N = 584 Vero + Vero - 0 UIK CHEK + 7 (4) ^a 0 (0) 0 (0) <td< td=""><td></td><td>-</td><td>+</td><td>-</td><td>+</td><td>-</td><td>+</td><td>-</td><td>+</td><td>-</td><td>+</td><td>+</td><td></td><td></td><td>1</td><td></td><td>1</td></td<>		-	+	-	+	-	+	-	+	-	+	+			1		1	
 ¹⁹Broth culture results shown are for GN, which agreed with the MacConkey results for all specimens except S4, which did not grow in MacConkey broth ¹Trp – test not performed, ¹Two STEC isolates were recovered: an O157/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx2a strain and a non-O157/Stx1a/Stx2a/Stx2a/Stx2a/Stx2a/Stx2a/Stx2a/Stx2a/Stx2a/Stx2a/Stx2		Ŧ	-	Ŧ	-	Ŧ	-	Ŧ	-	Ŧ	-	-			SHIGA TOXIN		SHIGA TOXIN	
 The clinical performance of the SHIGA TOXIN QUIK CHEK is comparable to the Vero cell cytotoxicity assay Direct fecal testing (without a broth culture step) identified true positive specimens missed by traditional culture methods: Ten positive samples were identified by direct fecal testing Nine positive samples were identified by GN broth culture Eight positive samples were identified by MacConkey broth culture Eight positive samples were identified by SMAC plate culture Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 																Shiga Toxin 1 (2)		
 Vero cell cytotoxicity assay Direct fecal testing (without a broth culture step) identified true positive specimens missed by traditional culture methods: Ten positive samples were identified by direct fecal testing Nine positive samples were identified by GN broth culture Eight positive samples were identified by MacConkey broth culture Eight positive samples were identified by SMAC plate culture Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 						00								(_	Shiga	a Toxin 1	1 (2)	
 Direct fecal testing (without a broth culture step) identified true positive specimens missed by traditional culture methods: Ten positive samples were identified by direct fecal testing Nine positive samples were identified by GN broth culture Eight positive samples were identified by MacConkey broth culture Eight positive samples were identified by SMAC plate culture Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 				10.7														
 missed by traditional culture methods: Ten positive samples were identified by direct fecal testing Nine positive samples were identified by GN broth culture Eight positive samples were identified by MacConkey broth culture Eight positive samples were identified by SMAC plate culture Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 			17.00							CHEK is	comp	barable	to the		n = 584	Vero +	Vero -	
 Ten positive samples were identified by direct fecal testing Nine positive samples were identified by GN broth culture Eight positive samples were identified by MacConkey broth culture Eight positive samples were identified by SMAC plate culture Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 	Vero	cell cy	ytotoxi	city as	ssay	ne SHI	GA TC	XIN (QUIK C						n = 584 QUIK CHEK +	Vero + 7 (4) ^a	Vero - 0 (0)	
 Nine positive samples were identified by GN broth culture Eight positive samples were identified by MacConkey broth culture Eight positive samples were identified by SMAC plate culture Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 	Vero Direc	cell cy t feca	ytotoxi I testir	city as ng (wit	ssay hout a	he SHIC broth c	GA TC	XIN (QUIK C						n = 584 QUIK CHEK + QUIK CHEK -	Vero + 7 (4) ^a 0 (0)	Vero - 0 (0)	
 Eight positive samples were identified by MacConkey broth culture Eight positive samples were identified by SMAC plate culture Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 	Vero Direc	cell cy t feca ed by	ytotoxi I testir traditio	city as ng (wit onal c	ssay hout a ulture r	he SHIC broth c method	GA TC culture s:	XIN (step)	QUIK C	fied tru	e posi				n = 584 QUIK CHEK + QUIK CHEK - Sensitivity: ^	Vero + 7 (4) ^a 0 (0) 100.0%	Vero - 0 (0)	
 Eight positive samples were identified by SMAC plate culture Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 	VeroDirec	cell cy t feca ed by • Ter	ytotoxi I testir tradition n posit	city as ng (wit onal co tive sa	ssay hout a ulture r amples	broth of method were id	GA TC culture s: dentifie	estep)	QUIK C identi direct	fied tru fecal te	e posi				n = 584 QUIK CHEK + QUIK CHEK - Sensitivity: ^ Specificity: ^	Vero + 7 (4) ^a 0 (0) 100.0% 100.0%	Vero - 0 (0)	
 Stx1a and Stx2a were the most prevalent Shiga toxin subtypes isolated from clinical specimens Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 	VeroDirec	cell cy t feca ed by • Ter • Nir	ytotoxi I testir tradition n posit	city as ng (wit onal co tive sa itive s	ssay hout a ulture r amples amples	he SHIC broth of method were ic s were	GA TC culture s: dentifie identifie	ed by	QUIK C identi direct GN b	fied tru fecal te roth cu	e posi esting Iture	tive sp	ecimens		n = 584 QUIK CHEK + QUIK CHEK - Sensitivity: ^ Specificity: ^ PPV: ^	Vero + 7 (4) ^a 0 (0) 100.0% 100.0%	Vero - 0 (0)	
 Shiga toxins produced by both O157 and non-O157 strains were detected Testing stool samples directly for Shiga toxin provides physicians with results a day 	VeroDirec	cell cy t feca ed by • Ter • Nir • Eig	ytotoxi I testir tradition n posit ne pos	city as ng (wit onal co tive sa itive s sitive s	ssay hout a ulture r amples ample	he SHI broth o method were io s were	GA TC culture s: dentifie identifie identifie	estep)	QUIK C identi direct y GN b y Mac	fied tru fecal te roth cu Conkey	e posi esting Iture broth	tive sp	ecimens		n = 584 QUIK CHEK + QUIK CHEK - Sensitivity: ^ Specificity: ^ PPV: ^ NPV: ^	Vero + 7 (4) ^a 0 (0) 100.0% 100.0% 100.0%	Vero - 0 (0)	
Testing stool samples directly for Shiga toxin provides physicians with results a day and Stx2, resulting in 11 positive results	 Vero Direc misse 	cell cy t feca ed by • Ter • Nir • Eig • Eig	ytotoxi I testir tradition posit ne posit pht posit	city as ng (with onal co ive sa itive s sitive s sitive s	ssay hout a ulture r amples ample sample	he SHIC broth of method were id s were s were s were	GATC culture s: dentific identific identific identific	e step) ed by fied by fied b	QUIK C identi direct y GN b y Mac y SMA	fied tru fecal te roth cu Conkey	e posi esting lture broth e cultu	tive sp culture re	ecimens		n = 584 QUIK CHEK + QUIK CHEK - Sensitivity: ^ Specificity: ^ PPV: ^ NPV: ^	Vero + 7 (4) ^a 0 (0) 100.0% 100.0% 100.0%	Vero - 0 (0)	
	 Vero Direc misse Stx1a speci 	cell cy t feca ed by Ter Nir Eig and mens	ytotoxi I testir tradition posit posit posit posit posit posit posit posit posit posit posit posit	city as ng (with onal co ive sa itive s sitive s sitive s were	ssay hout a ulture r amples ample sample the mo	he SHI broth of method were in s were s were s were s were	GA TC culture s: dentifie identifie identifie identifie alent	e step) ed by fied by fied b fied b Shiga	QUIK C identi direct GN b y Mac y Mac y SMA toxin	fied tru fecal te roth cu Conkey C plate subtype	e posi esting ture broth cultu es isol	tive spanner	ecimens om clinical		n = 584 QUIK CHEK + QUIK CHEK - Sensitivity: ^ Specificity: ^ NPV: ^ NPV: ^ Correlation: ^	Vero + 7 (4) ^a 0 (0) 100.0% 100.0% 100.0% 100.0%	Vero - 0 (0) 577 (580)	
	 Vero Direc misse Stx1a speci Shiga 	cell cy t feca ed by Ter Nir Eig and Eig and mens toxir	ytotoxi I testir tradition posit ne posit posit posit posit Stx2a	city as ng (with onal co itive sa itive sa sitive s sitive s were duced	ssay hout a ulture r amples ample sample the mo	h O157	GA TC culture s: dentific identific identific identific alent	e step) ed by fied by fied b fied b fied b Shiga	QUIK C identi direct GN b y Mac y Mac y SMA toxin s	fied tru fecal te roth cu Conkey C plate subtype	e posi esting lture broth e cultu es isol	tive spanners of the spanners	ecimens om clinical	a	n = 584 QUIK CHEK + QUIK CHEK - Sensitivity: ^ Specificity: ^ PPV: ^ NPV: ^ Correlation: ^	Vero + 7 (4) ^a 0 (0) 100.0% 100.0% 100.0% 100.0% mples we	Vero - 0 (0) 577 (580) ere identified,	

- J Infect Dis. 186:57-63.
- Microbiol. 50:2951-2963.

J. Boone, J. Heptinstall, M. Phillips, B. Doyle, K. Schwab, and L. Chen. TechLab, Inc. Blacksburg, Virginia

REFERENCES

•Serna, A. 4th, and E. C. Boedeker. 2008. Pathogenesis and treatment of Shiga toxin-producing *Escherichia coli* infections. Curr Opin Gastroenterol. 24:38-47. •O'Brien, A. D. and G. D. LaVeck. 1983. Purification and Characterization of a Shigella dysenteriae 1-Like toxin Produced by Escherichia coli. Infect. Immun. 40:675-683. •Gould, L. H., C. Bopp, N. Strockbine, R. Atkinson, V. Baselski, B. Body, R. Carey, C. Crandall, S. Hurd, R. Kaplan, M. Neill, S. Shea, P. Somsel, M. Tobin-D'Angelo, P. M. Hriffin, and P. Gerner-Smidt. 2009. Recommendations for Diagnosis of Shiga Toxin-Producing Escherichia coli Infections. MMWR 58:1-14. •Cornick, N. A., S. Jelacic, M. A. Ciol, and P. I, Tarr. 2002. Escherichia coli O157:H7 Infections: Discordance Between Filterable Fecal Shiga Toxin and Disease Outcome.

•Paton, J. C., and A. W. Paton. 1998. Pathogenesis and Diagnosis of Shiga Toxin-Producing Escherichia coli Infections. Clin Microbiol Rev. 1:450-479. •Scheutz, F., L. D. Teel, L. Beutin, D. Piérard, G. Buvens, H. Karch, A. Mellmann, A. Caprioli, R. Tozzoli, S. Morabito, N. A. Strockbine, A. R. Melton-Celsa, M. Sanchez, S. Persson, and A. D. O'Brien. 2012. Multicenter Evaluation of a Sequence-Based Protocol for Subtyping Shiga Toxins and Standardizing Stx Nomenclature. J Clin

TechLab, Inc. Blacksburg, Virginia (540) 953-1664 jeboone@techlab.com